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ABSTRACT: In the propylene polymerization process, the melt index (MI), as a critical quality variable in determining the product

specification, cannot be measured in real time. What we already know is that MI is influenced by a large number of process variables,

such as the process temperature, pressure, and level of liquid, and a large amount of their data are routinely recorded by the distrib-

uted control system. An alternative data-driven model was explored to online predict the MI, where the least squares support vector

machine was responsible for establishing the complicated nonlinear relationship between the difficult-to-measure quality variable MI

and those easy-to-measure process variables, whereas the independent component analysis and particle swarm optimization technique

were structurally integrated into the model to tune the best values of the model parameters. Furthermore, an online correction strat-

egy was specially devised to update the modeling data and adjust the model configuration parameters via adaptive behavior. The

effectiveness of the designed data-driven approach was illustrated by the inference of the MI in a real polypropylene manufacturing

plant, and we achieved a root mean square error of 0.0320 and a standard deviation of 0.0288 on the testing dataset. This proved the

good prediction accuracy and validity of the proposed data-driven approach. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132,

41312.
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INTRODUCTION

The purpose of the industrial polypropylene manufacturing

process is to produce qualified products, and then, the quality

control of the products becomes the core problem. The melt

index (MI), as a key parameter in determining the product’s

grade and quality control of polypropylene, is generally eval-

uated offline with an analytical procedure that takes almost 2 h

to complete in the laboratory.1 This causes a large time delay in

the quality control system without any quality indicator during

this period of time. Currently, a number of first-principle mod-

els, black box models that use neural networks, statistical data

modeling techniques, and hybrid models have been developed

to monitor, control, and optimize these complex processes.2,3

Theoretically, an online analyzer can be constructed with a

physical process model on the basis of the description of the

polymerization behaviors; this is also called the knowledge-

driven model.4–9 However, it is difficult to build an adequate

knowledge-driven model for predicting the MI because of the

lack of understanding and/or to the ability to satisfactorily con-

struct a mathematical model of this polymerization process.10–14

Fortunately, many researchers have successfully inferred the MI

with many kinds of soft-sensor models that relate the MI to

other easily measurable process variables from the huge amount

of historical data stored in the real-time database of the distrib-

uted control system (DCS). These soft sensors, also called data-

driven models, which involve mathematical equations, are

assessed from the analysis concurrent input and output data.

For example, Lou et al.15 proposed a novel, multiple-priori

knowledge-based neural network inferential model for MI pre-

diction. By embedding previous knowledge, the model ensured

safety in the quality control of the MI. Zhang et al.16 set up a

novel radial basis function (RBF) prediction model under cha-

otic theory for MI prediction and achieved quite good perform-

ances. Jiang et al.17 devised an optimal soft-sensing model,

called least squares support vector machines with ant colony-

immune clone particle swarm optimization (AC–ICPSO–LS-

SVM), to predict the MI successfully. Ge et al.18 developed a so-

called combined local Gaussian process regression, and it

showed the best MI quality prediction results. Park et al.19 used
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partial least squares (PLS) and support vector regression to pre-

dict the MI in the high-density polyethylene process. The simu-

lation results show that both PLS and support vector regression

exhibited excellent prediction performances, even for operating

situations accompanying severely frequent grade changes. Han

et al.20 introduced three different approaches, including support

vector machines (SVMs), PLS, and back-propagation neural

networks, to estimate the MI and concluded that the standard

SVM yielded the best prediction. Rallo et al.21 provided a fuzzy

adaptive resonance theory map (ARTMAP) neural system and

two hybrid networks to infer the MI of six different low-density

polyethylene grades produced in a tubular reactor. Although

these works achieved better and better MI prediction accuracy,

the greater prediction performance and the better universality

of the estimation model were still the first-line goal in both the

academic and industrial communities.

As is well known, the polypropylene manufacturing process is a

highly nonlinear process evidenced by mechanistic analysis of

the reactions and plants. So, nonlinear data-driven models

should be considered. Now, the least squares support vector

machines (LS-SVM) method is widely used in areas of nonlin-

ear system identification, optimal control, and pattern recogni-

tion.22–24 As a soft-sensing method, its learning and

generalization ability is greatly affected by the parameter settings

and the selection of input variables. Independent component

analysis (ICA),25 as a very general-purpose projection technique,

can be used to extract relevant features and to concurrently

obtain fewer underlying components that are maximally inde-

pendent from each other. This is also beneficial for cutting

down the subsequent data-driven model structure. In virtue of

the global convergence characteristics, the particle swarm opti-

mization (PSO) algorithm has proven to be very successful and

efficient in identifying the optimum parameters.26 Accordingly,

on the basis of feature selection and parameter optimization

techniques, an optimal LS-SVM data-driven model was devel-

oped, in which ICA was in charge of discerning the inputs of

the LS-SVM model and PSO was responsible for optimizing the

model parameters. Here, it is worthwhile to note that the

appropriate configuration parameters of LS-SVM usually covary

with the selection of input variables. Thus, in our designed pro-

cedure, the selection of feature variables and the parameter set-

ting of LS-SVM were regarded as a combination optimal

problem, and an objective function based on the root mean

square error (RMSE) was constructed. Their optimum values

were searched by a fine-grid-based experimental design. More-

over, when addressing the process time-varying nature, we

explored online correction strategy (OCS) to update the model-

ing data and adjust the values of the model configuration

parameters via adaptive behavior. This scheme in a fashion to

minimize the prediction error was only activated whenever a

model mismatch happened with the addition of new process

data and the removal of older ones recursively.

The rest of this article is organized as follows. In the Experi-

mental section, we briefly describe the polypropylene manufac-

turing process and the data collection. Then, we present the

framework of the proposed data-driven modeling approach and

demonstrate in detail the principles and techniques in building

the soft-sensor model. In the Results and Discussion section, we

review the research results of the previous approach on a real

plant with different batches and discuss all sides. Lastly, we

make some concluding remarks.

EXPERIMENTAL

Process Description and Data Collection

The process considered here was the propylene polymerization

manufacturing process, which is currently used for commercial

purposes in real plants. To obtain an intuitive understanding of

the process, its simple schematic diagram is illustrated in Figure

1. The process consists of a chain of reactors in series, two con-

tinuous stirred-tank reactors, and two fluidized-bed reactors.

Propylene and hydrogen are fed into each reactor, but the cata-

lyst is added only to the first reactor along with the solvent.

These liquids and gases supply reactants for the growing poly-

mer particles and provide the heat-transfer media. The poly-

merization reaction takes place in the liquid phase in the first

two reactors and is completed in the vapor phase in the third

and fourth reactors to produce the powdered polymer products.

Thirty process variables were measured in our study. According

to the workers’ experience in operating the propylene polymer-

ization plant and our thorough analysis of its mechanism,27 a

pool of nine process variables (T, P, H, a, f1, f2, f3, f4, and f5)

were chosen as the major factors or the original process variables

to develop the MI prediction model, where T, P, H, and a are the

process temperature, pressure, level of liquid, and percentage of

hydrogen in the vapor phase, respectively; f1, f2, and f3 are the

flow rates of the three streams of propylene; and f4 and f5 are

the flow rates of the catalyst and aid-catalyst, respectively.

The data used for training, testing, and generalizing the devel-

oped data-driven model were acquired from the historical logs

Figure 1. Schematic of the propylene polymerization process.
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recorded in a real propylene polymerization plant. The sampling

time of MI was 2 h, the dataset of nine process variables were

from the DCS database, and their interval time of automatic

recording by DCS was only several seconds. The average resi-

dence time for this real propylene polymerization process was

also about 2 h and was considered in the data initialization.

First, they were filtered to discard outliers, and a collection of

85 pairs of input–output data was used in this research. Fifty

pairs were used as the training dataset, another 20 pairs were

the testing dataset, and the rest were the generalization dataset,

the latter two of which were used to test the accuracy and the

universality of the models, respectively. The testing dataset was

taken from the same batch as the training dataset, whereas the

generalization dataset was obtained from a different one. All of

these original input and output data are normalized linearly

into the range [0,1]. Consequently, the direct output of the pre-

diction model was denormalized to obtain the true MI value.

Data-Driven Modeling and Optimization

The architecture of our proposed data-driven modeling

approach is depicted in Figure 2. It consisted of four modules:

feature extraction, nonlinear modeling, parameter optimization,

and dynamic adjustment. First, from the selected original pro-

cess variables having an influence on MI, the independent com-

ponents (or secondary variables) were extracted by ICA.

Subsequently, LS-SVM was granted to establish a nonlinear

model between these secondary variables and the response vari-

able MI. At the same time, the optimum values of the model

configuration parameters were sought through the PSO evolu-

tionary algorithm. Because a reliable dynamic model could be

useful for long-term simulation, the OCS was integrated to

modify a trained LS-SVM model by means of incremental

updating and decremental pruning algorithms. Henceforth, the

developed data-driven model could also be called OCS–PSO–

ICA–LS-SVM.

Feature Extraction: ICA

Included in a prediction model, highly correlated variables, or

variables that are unrelated to the outcome of interest, can lead

to overfitting, and the accuracy and reliability can suffer. The

aim of ICA is to recover independent sources given only sensor

observations. In contrast to correlation-based transformations,

such as principal component analysis (PCA), ICA not only

decorrelates the signals (second-order statistics) but also reduces

higher order statistical dependencies.25 In this context, we first

used ICA for data reduction. We computed a compact and opti-

mal description of the model inputs.

Consider a process data matrix X (n 3 p) composed of n sam-

ples and p process variables. In the ICA algorithm, the meas-

ured process variables x � <p (where x the measured process

vector in the p-dimensional Euclidean space) can be expressed

as a linear combination of unknown independent components

(s 5 [s1, s2,. . .,sd] � <d (where s the independent vector in the

d-dimensional Euclidean space), where d is the number of inde-

pendent components), that is

x5As (1)

where A � <p3d is the mixing matrix. ICA tries to estimate A

and s only from the known x. Therefore, it is necessary to find

a demixing matrix (P), which is given as

ŝ5Px (2)

such that the reconstructed vector (̂s) becomes as independent

as possible. For convenience, we assumed d 5 p and E(ssT) 5 I.

where sT is the transpose of s, I is an identity matrix. The whit-

ening transformation (t) is expressed as

t5Qx5QAs5Bs (3)

where the whitening matrix Q 5 K21/2UT, K is a diagonal

matrix with the eigenvalues of the data covariance matrix, U is

a matrix with the corresponding eigenvectors as its columns,

and B is an orthogonal matrix. The relationship between P and

B is as follows:

P5BTQ (4)

Hence, eq. (2) can be rewritten as

ŝ5Px5BTQx5BTK21=2U Tx (5)

According to eq. (5), the ICA problem can be reduced to find

B.

To calculate B, Hyv€arinen28 introduced a fast, fixed-point algo-

rithm for ICA. For large amounts of data, the data-reducing

algorithm for estimating independent components29 can be sub-

stituted here.

Nonlinear Modeling: LS-SVM

LS-SVM is a regularized supervised approximator.30 Given a

training dataset of n data points ðsi; yiÞf gn
i51 with the ith input

si � <d (where si is the i-th data point in the d-dimensional

Euclidean space) and its corresponding output yi � <, the fol-

lowing regression model was used:

y sð Þ 5wTu sð Þ 1b (6)

where u(�) is a mostly nonlinear function that maps the input

variable space into a higher dimensional embedding space, w is

a weight vector, b is the bias term, and y is the response vari-

able. Next in the LS-SVM for function estimation, the objective

function of the optimization problem is defined as follows:

min
w;b;n

Jðw; b; nÞ5 1

2
wT w1

1

2
c
Xn

i51
n2

i (7)

and is subject to the equality constraints

Figure 2. Structure of the proposed data-driven approach.
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yi5wT u sið Þ1b1ni; i5 1; 2; . . . ; n (8)

where c is the user-defined regularization factor, also known as

the hyper parameter, which balances the model complexity and

approximation accuracy, and ni is the approximation error. To

solve this constrained optimization problem, the corresponding

Lagrange function [L(w,b,n,a)] is constructed as follows:

Lðw; b; n; aÞ5Jðw; b; nÞ2
Xn

i51

ai wT uðsiÞ1b1ni2yi

� �
(9)

where ai is the Lagrange multiplier. The solution of the previous

equation can be obtained by partially differentiating with

respect to each variable:

@L

@w
50! w5

Xn

i51

ai/ðsiÞ

@L

@b
50!

Xn

i51

ai50

@L

@ni

50! ai5cni; i51; 2; . . . ; n

@L

@ai

50! wT / siÞ1b1ni2yi50; i51; 2; . . . ; nð

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(10)

Where L is the Lagrange function defined in the above equation

(9). which can be written as the solution to the following set of

linear equations after the elimination of w and ni:

0 1T
v

1v K 1c21I

" #
b

a

" #
5

0

y

" #
(11)

with y 5 [y1,y2, . . . ,yn]T, 1v 5 [1,1, . . . , 1n]T, a 5 [a1,a2, . . . ,an]T, I

is an n 3 n identity matrix and the subscript v notes that 1v is

a vector. K is known as the Gram matrix and its element Kij

(si,sj) 5 /(si)
T/(sj) is the kernel function and must follow Mer-

cer’s theory.31 The classical examples of kernel functions are lin-

ear, polynomial, and Gaussian kernels. In this study, we

considered the most common case of the LS-SVM model for

regression, namely, the LS-SVM model with a Gaussian kernel,32

the equation of which is

Kðs; si; rÞ5exp 2
ks2sik

r2

� �
(12)

Hereto, the resulting LS-SVM model for function estimation

can be expressed as

yðsÞ5
Xn

i51

aiKðs; siÞ1b (13)

where ai and b are the solution to eq. (11).

Model Optimization: PSO

Compared with genetic algorithm,33 the PSO algorithm is easily

implemented with fewer arguments; thus, it is very suitable and

can help one obtain the global optimal solution.26 PSO is initial-

ized with a group of random particles (solutions), and then

searches for optima are done by the updating of the generations.

Now, with the assumption that sm 5 (sm,1,sm,2, . . . ,sm,d) is the

position of the mth particle in d-dimension space, vm 5 (vm,1,

vm,2,. . .vm,d) is its velocity, which represents its direction of

searching. In the iteration process, each particle keeps the best

position found by itself (Lbest); it also knows the best position

searched by the group particles (Gbest) and changes its velocity

according to these two best positions. After the two best values

are determined, the particle updates its velocity and positions

with the following two equations:34

vm;q t11ð Þ5 gvm;q tð Þ1/1c1 Lbestm;q
2sm;q tð Þ

� �
1/2c2 Gbestq

2sm;q tð Þ
� � (14)

sm;q t11ð Þ5sm;q tð Þ1vm;q t11ð Þ (15)

where vm,q and sm,q are the velocity and its responding solution

of the mth particle in the qth dimension (q 5 1,2,. . .d), respec-

tively. Here, t describes current state, t 1 1 describes the next

state, c1 and c2 are acceleration constants, /1 and /2 are ran-

dom numbers uniformly distributed in [0,1], and g is the iner-

tia factor for controlling the learning rate. Because the velocity

of the particle has been determined, the particle’s solution will

be modified at the next time step (t 1 1). According to eqs.

(14) and (15), the direction of each particle will alter its trajec-

tory and gradually move toward the direction of Gbest.

Dynamic Modification: OCS

OCS is used to deal with prediction control problem. An LS-

SVM model with fixed parameters cannot be adapted to a

dynamic system. The main idea of OCS is the timely updating

of the modeling data and then the rebuilding of a new LS-SVM

prediction model. The flow chart of OCS is shown in Figure 3.

According to the time sequence, the historical data are divided

into two parts, the training dataset ({Xt,yt}) and the testing

dataset ({Xv,yv}), to construct an LS-SVM model. When the

newly measured variables (Xnew) are collected online, their inde-

pendent components (Snew.) are extracted and fed into this

established LS-SVM model, their corresponding prediction

results (ŷnew) will be obtained. Because of the delay of analysis,

the melt index analytic value (ynew) is available for a limited

period of time. Now, OCS calculates the prediction error

between ynew and ŷnew. Provided that the prediction error of

some individual from the new dataset exceeds the given limit,

such as the maximum absolute error (MAXE) on the training

dataset, this new individual should be added to the testing

Figure 3. Schematic diagram of the OCS.
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dataset in time order. At the same time, the first sample from

the testing data record will substitute for that with the biggest

fitting error from the training dataset. Otherwise, with the pur-

pose of reducing the expense of model modification, those new

data with small prediction errors will not be entered into the

testing dataset to rebuild the soft-sensor model.

Data-Driven Soft Sensor: Experimental Procedure

From what has been discussed previously, the whole procedure

of the explored data-driven soft sensor can be summarized in

the following steps:

Step 1. First, d is initialized to 1. The independent component,

accompanied by P, is derived from the selected original process

variables by ICA on the basis of the training dataset.

Step 2. The kernel parameter (r) and c are set with two ran-

dom numbers, an initial LS-SVM model is established on this

independent components and the corresponding response vari-

able MI.

Step 3. Then, for the testing dataset, the original process varia-

bles are projected to P and produce their independent

components.

Step 4. These independent components are fed into the initial

LS-SVM model, and their MI prediction values are obtained.

Step 5. The RMSE indicator is counted on the testing dataset.

Step 6. The PSO algorithm is carried out, and this procedure is

repeated from steps 2 to 5 to obtain the local optimal values of

r and c.

Step 7. All of the previous six steps are repeated with alteration

of r, c, and d in a grid search manner because d is integral and

its optimal value will be in the range 1–9. In the end, the global

optimum values of d, r, and c are searched in accordance with

the minimum RMSE.

Step 8. It is determined whether the prediction errors of some

new data points exceed their given limit, such as the MAXE. If

they do, a new LS-SVM model should be set up by the substitu-

tion of these new data points for the older ones. Otherwise, the

LS-SVM model, brought forth in the step 7, will be used as an

effective soft sensor to predict MI all along, as shown in Figure 2.

RESULTS AND DISCUSSION

Model Performance Criteria

Models are commonly evaluated on the basis of comparisons

against observations. This comparison is generally achieved with

a set of statistical indicators to analyze the model performance.

The difference between the model output and the desired out-

put is referred to as the error, and it can be measured in differ-

ent ways. Here, RMSE, MAXE, mean absolute error (MAE),

mean relative error (MRE), standard deviation (STD), and

Theil’s inequality coefficient (TIC)35 were used as derivation

measurements between the measured and predicted values of

MI. These error indicators were defined as follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i51

ðyi2ŷ iÞ
2

s
(16)

MAXE5 max
i2f1;2;...;ng

jyi2ŷ ij
� �

(17)

MAE5
1

n

Xn

i51

jyi2ŷ ij (18)

MRE5
1

n

Xn

i51

jyi2ŷ ij
yi

(19)

STD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n21

Xn

i51

ðei2�eÞ2
s

(20)

TIC5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i51 ðyi2ŷ iÞ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i51 yi
2

p
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i51 ŷ i

2
p (21)

where ei 5 yi 2 ŷi, �e5 1
n

Pn
i51 ei , and yi and ŷi denote the meas-

ured and predicted values, respectively. Among eqs. (16–21),

MAE, MRE, and RMSE indicate the prediction accuracy of the

proposed data-driven approach, whereas TIC and STD reveal

the predictive stability of the approach. As for MAXE, it can

reflect the model’s resistance to those samples that show abrupt

changes. Because the prediction accuracy is most important for

the MI prediction models, these indicators can well evaluate the

performance of the models. In the following text, different data-

driven models are compared by their performances on the test-

ing dataset and the generalization dataset.

Model Parameter Tuning

Suppose that we have a data-driven model with several

unknown parameters and a training dataset to which the model

can be fit. The learning process optimizes the model parameters

to make the model fit the training data as well as possible. If we

then take an independent sample of testing data from the same

population as the training data, it will generally turn out that

the model does not fit the testing data as well as it fits the

training data. This is called overfitting. Thus, to prevent overfit-

ting and assess how a model will generalize to the independent

dataset, a testing dataset is used to construe the data-driven

model and decide the model parameters.

In our proposed data-driven modeling approach, the optimal

values of all of its parameters were determined by the previous

RMSE indicator. That is, eq. (16) was now used as the objective

function and fitness function to be minimized. There were too

many parameters that had to be chosen carefully so as to ensure

good performance of the data-driven model. First, d in ICA was

fixed according to the minimal prediction error on the testing

dataset by the cross-validation technique.36 For example, four

Figure 4. r optimization curve with PSO.
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independent components (d 5 4) were used in our proposed

OCS-PSO-ICA-LS-SVM model. What about the r and c in the

LS-SVM nonlinear modeling? It was clear that r and c were

related to each other and had an impact on the model nonli-

nearity in company. c was in charge of the trade-off between

the model smoothness and accuracy. If c became larger, less reg-

ularization was applied, and this led to a more nonlinear model.

The r value was related to the distance between the training

data points and to the smooth interpolation of the resulting LS-

SVM model.37 If r became larger, more neighbors were

included in the model; this led to a more linear model. There-

fore, it was most important to give their proper values, and the

PSO algorithm was used to locate the global optimal solution

by the fine tuning of the search process. As a result of the devel-

oped data-driven model and with increasing number of itera-

tions, the convergence characteristics of r, c, and model

precision RMSE are shown in Figures 4, 5, and 6, respectively.

In line with the r and c shift, the tendency curves of their com-

mon objective function converged gradually, and the searched

results were RMSE 5 7.7617 3 1027 with r 5 12.564 and

c 5 54.597 at the 69th iteration time. Other parameters of the

PSO algorithm were chosen as follows: the particle number was

set to 30, and the constants g, c1, and c2 were initialized to 0.75,

2.0, and 2.0, respectively. The initial value of the velocity was

constrained into [21.0,1.0]. The algorithm stopped when the

indicator RMSE was 1026 or the iteration times exceeded 100.

Results and Analysis

To evaluate the capability of our developed data-driven model,

various model performance indicators on the testing dataset

and on the generalization dataset were calculated and are sepa-

rately listed in Tables I and II. In addition, several other data-

driven modeling methods, such as simple LS-SVM, LS-SVM

with ICA (called ICA-LS-SVM), and LS-SVM with PSO and

ICA (called PSO-ICA-LS-SVM), were used to serve as compara-

tive methods, and their model structures and parameters were

also tuned perfectly.

As far as the model prediction ability was concerned, there are

six indicators in Table I, and all of their results indicate that

our proposed OCS-PSO-ICA-LS-SVM model comprehensively

exceeded the other models. Specifically, it had an MAE of

0.0551, which was significantly lower than those of 0.0685,

0.0775, and 0.0827 from the PSO-ICA-LS-SVM, ICA-LS-SVM,

and LS-SVM models, respectively. As a supplement, the MAE

was 0.0842 from the LS-SVM reported by Shi and Liu.38 Simi-

larly, the RMSE also confirmed that the proposed method was

superior for the model prediction accuracy. Then, the OCS-

PSO-ICA-LS-SVM yielded the smallest STD among the four

methods, which revealed the predictive stability of the method.

Moreover, TIC of the proposed data-driven model was quite

acceptable when compared with those of the other three differ-

ent models; this indicated a good level of agreement between

the proposed model and the studied propylene polymerization

process.

To further explore the effectiveness of our proposed data-driven

approach, models were also evaluated on the generalization

dataset, and the results are presented in Table II. It was noted

that the performances were consistent with the previous testing

data results, with a slightly decrease in the predictive precision.

The MAE of OCS-PSO-ICA-LS-SVM was 0.0294, compared

with 0.0607 of LS-SVM; it showed a decrease of approximately

52%. Similar behaviors were observed in terms of MAXE, MRE,

RMSE, STD, and TIC. The high accurate prediction of MI on

this dataset gave strong support for the fact that the OCS-PSO-

ICA-LS-SVM model had good universality.

Figure 5. c optimization curve with PSO.
Figure 6. RMSE tendency curve with different rs and cs.

Table I. Model Performance Comparison with the Testing Dataset

Method MAXE MAE MRE RMSE STD TIC

LS-SVM 0.3343 0.0827 0.0354 0.1146 0.1042 0.0234

ICA–LS-SVM 0.4211 0.0775 0.0331 0.1089 0.0972 0.0223

PSO–ICA–LS-SVM 0.3625 0.0685 0.0296 0.0987 0.0989 0.0203

OCS–PSO–ICA–LS-SVM 0.3607 0.0551 0.0240 0.0894 0.0896 0.0184
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For both the testing and generalization dataset, their MI meas-

ured values and the predicted values from the models are

directly exhibited in Figures 7 and 8; this speaks even more

powerfully than the results in Tables I and II do. Here, the

curves marked with diamonds, circles, squares, and downward

triangles are the MI values predicted by LS-SVM, ICA-LS-SVM,

PSO-ICA-LS-SVM, and OCS-PSO-ICA-LS-SVM, respectively.

Clearly, our proposed data-driven OCS–PSO-ICA-LS-SVM

model gave nearly real MI value prediction, with much more

accuracy than the other three models. Thus, we proved that the

explored data-driven model held excellent universality in MI

prediction both statistically and graphically. With the aid of an

online adjustment mechanism, the proposed data-driven model

accurately forecasted the testing and generalization data.

Ultimately, to further reveal the explored data-driven model’s

superiority, we compared it with several other soft-senor models

for MI prediction reported in the open literature. In the first

instance, nine different data-driven models were put into prac-

tice, and the PLS model won the best RMSE of 0.6082 (the

original value was 2.72 by a different formula in the reference)

on the basis of 40 testing data points.17 In our proposed OCS-

PSO-ICA-LS-SVM model, the RMSE was 0.0894, with an obvi-

ously huge percentage decrease. Next, the standard SVM model

was recommended by Han et al.20 from its compared PLS and

ANN models. This was quantitatively supported by the smallest

RMSE value of 1.51 on the testing dataset. However, when com-

pared here with a value of 0.0894, it exceeds this value a lot as

well. The last one, the AC–ICPSO–LS-SVM model, was pro-

posed and verified to be superior to the LS-SVM model by

Jiang et al.17 We obtained an MAE of 0.0411 on the generaliza-

tion dataset, which was the best predictive result so far reported

in the open literature. However, our OCS-PSO-ICA-LS-SVM

model achieved an MAE of 0.0294 on the same generalization

dataset as Jiang et al.,17 a decrease of 28.5%. In terms of MRE,

STD, and TIC, similar tendencies were observed, and this fur-

ther revealed the advantages of the proposed OCS-PSO-ICA-LS-

SVM data-driven model.

CONCLUSIONS

MI is the dominant quality index for polypropylene. The effec-

tive monitoring of the MI and the realization of automatic

quality control of the production process is an urgent problem

in the plastics industry. In this study, an efficient data-driven

model was developed for predicting MI through merging with

feature extraction and model parameter optimization. With the

help of an ICA algorithm, independent components were

extracted from the selected original process variables and used

as inputs of the successive LS-SVM model. So, in that sense, the

feature extraction was regarded as an optimization problem for

searching the model optimum inputs. Thanks to PSO the intel-

ligent computational method, the configuration parameters of

the LS-SVM model were optimized automatically. This could

ensure a global convergence and high accuracy of the data-

driven model. In addition, OCS was cultivated to guard the

model real-time characteristics and good generalization ability.

It could efficiently modify a trained LS-SVM model by means

of incremental updating and decremental pruning algorithms

whenever new data points are added to replace the pruned data

from the training dataset. All of these theoretical conclusions

were strongly supported by the practical MI prediction results

in our research. Although its application focused on the

Table II. Model Performance Comparison with the Generalization Dataset

Method MAXE MAE MRE RMSE STD TIC

LS-SVM 0.1113 0.0607 0.0238 0.0722 0.0775 0.0142

ICA–LS-SVM 0.0948 0.0549 0.0216 0.0687 0.0747 0.0135

PSO–ICA–LS-SVM 0.0818 0.0465 0.0182 0.0503 0.0526 0.0099

OCS–PSO–ICA–LS-SVM 0.0415 0.0294 0.0116 0.0320 0.0288 0.0062

Figure 7. Prediction results of the MI for the testing dataset. Figure 8. Prediction results of the MI for the generalization dataset.
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propylene polymerization process, the proposed OCS-PSO-ICA-

LS-SVM data-driven modeling approach was general and could

be applied to similar industry processes in practice.
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